Refining Corrosion Technologist
NACE-RCT-001

Exam Preparation Guide
March 2018
Table of Contents

Introduction .. 3
Target Audience.. 3
Requirements .. 4
Exam Blue Print .. 5
Types of Questions... 6
 Types of Questions ... 6
 Sample Questions.. 6
 Answer Key .. 7
Preparation .. 8
 Training... 8
 Reference Material.. 8
Introduction

The Refining Corrosion Technologist exam is designed to assess whether a candidate has the requisite knowledge and skills that a minimally qualified Refining Corrosion Technologist must possess. The 100 multiple-choice questions are based on the Refining Corrosion body of knowledge. A candidate should know the processes and corrosion mechanisms that are specific to the corrosion industry including both low and high temperature principles. A minimally qualified candidate will know the basic functions of each refinery process unit, the feed, chemical reaction, equipment, and end product necessary for converting crude oil into a salable product.

<table>
<thead>
<tr>
<th>Test Name</th>
<th>NACE-Refining Corrosion Technologist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Code</td>
<td>NACE-RCT-001</td>
</tr>
<tr>
<td>Time</td>
<td>2 ½ hours</td>
</tr>
<tr>
<td>Number of Questions</td>
<td>100</td>
</tr>
<tr>
<td>Format</td>
<td>Computer Based Testing (CBT)</td>
</tr>
<tr>
<td>Passing Score</td>
<td>A pass/fail grade is provided at the end of the exam.</td>
</tr>
</tbody>
</table>

Target Audience

The Refining Corrosion Technologist is responsible for identifying, locating, and controlling corrosion in refinery environments. A Refining Corrosion Technologist may be:

- Design engineer
- Process engineer
- Procurement agents
- Maintenance planners
- Service company representatives who support refineries
- Corrosion and equipment engineers
- Metallurgists
- Inspectors
- Inspection supervisors who works in major integrated companies associated with the refining industry (i.e. oil, refining, petrochemical, inspection, engineering and construction)
- Licensors, equipment, inhibitor and chemical treatment suppliers
Requirements

Requirements for Refining Corrosion Technologist

- Work Experience and Education Prerequisite
- Course
- 1 Core Exam
- Application

<table>
<thead>
<tr>
<th>Prerequisite (choose one of the following options):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1:</td>
</tr>
<tr>
<td>2 years verifiable Corrosion work experience in Refining</td>
</tr>
<tr>
<td>And</td>
</tr>
<tr>
<td>Bachelor’s Degree in Physical Sciences or Engineering</td>
</tr>
</tbody>
</table>

Course Requirements

Successfully complete the following course:

Course - Corrosion Control In The Refining Industry or Equivalent Training

Core Exam Requirements

Exam - Refining Corrosion Technologist Exam—NACE-RCT-001

Application Requirements

Approved Refining Corrosion Technologist

Submit Application

Candidates must apply for this certification by submitting an on-line application which is subject to approval. Applications must be submitted within 3 years of successful completion of exam.

Certification renewal requirements—

- Recertification application* required every 3 years
- 1.5 years of Corrosion work experience in refining
- 8 hours per year of ongoing Professional Development Activity (24 hours total for the 3 year cycle)

Upon successful completion of requirements, the candidate will be awarded a **Refining Corrosion Technologist Certification**.

*Approval required

*Equivalent training must include all topics covered in the Corrosion Control in the Refining Industry course (see Appendix A)
Exam Blue Print

Domain 1- Corrosion Principles–19%
- Low Temperature Corrosion Principals
 - Corrosion Rates and Polarization
 - Passivity
 - Temperature and Concentration
 - Low Temperature Conditions
- High Temperature Corrosion Principals
 - Rate Laws
 - High Temperature Conditions

Domain 2- Corrosion Mechanism–19%
- Metal Loss—General and/or Localized Corrosion
- Galvanic Corrosion
- Pitting
- Crevice Corrosion
- Intergranular Attack
- Erosion-Corrosion
- Hydrogen Chloride
- Ammonium Bisulfide (NH4HS)
- Carbon Dioxide
- Process Chemicals (level 2)
- Organic Chlorides
- Aluminum Chloride
- Sulfuric Acid
- Hydrofluoric Acid
- Phosphoric Acid
- Phenol (Carbolic Acid)
- Amines
- Atmospheric (External) Corrosion
- Corrosion Under Insulation (CUI)
- Soil Corrosion
- High-Temperature Sulfide Corrosion (Without Hydrogen Present)
- High-Temperature Sulfide Corrosion (With Hydrogen)
- Naphthenic Acid Corrosion
- High-Temperature Oxidation

Domain 3- Stress Corrosion Cracking–10%
- Chloride Stress Corrosion Cracking (CISCC)
- Alkaline Stress Corrosion Cracking (ASCC)
- Carbonic Acid (Wet CO2)
- Polythionic Acid Stress Corrosion Cracking (PTA SCC)
- Ammonia Stress Corrosion Cracking (NH3 SCC)
- Hydrogen Cyanide (HCN)
- SCC Prevention
- Wet H2S Cracking
 - Hydrogen Blistering
 - Sulfide Stress Cracking (SSC)
 - Hydrogen Induced Cracking (HIC)
 - Stress Oriented Hydrogen Induced Cracking (SOHIC)
- High-Temperature Hydrogen Attack (HTHA)

Domain 4- Metallurgical Failures–8%
- Grain Growth
- Graphitization
- Hardening
- Sensitization
- Sigma Phase
- 885°F (475°C) Embrittlement
- Temper Embrittlement
- Liquid Metal Embrittlement (LME)
- Carburization
- Metal Dusting
- Decarburization
- Selective Leaching

Domain 5- Mechanical Failures–2%
- Incorrect or Defective Materials
- Mechanical Fatigue
- Corrosion Fatigue
- Cavitation Damage
- Mechanical Damage
- Overloading
- Overpressuring
- Brittle Fracture
- Creep
- Stress Rupture
- Thermal Shock
- Thermal Fatigue
Domain 6- Unit Specific Corrosion Issues—34%

- Crude Distillation and Desalting
- Fluid Catalytic Cracking
- Cracked Light Ends Recovery
- Hydrofluoric Acid Alkylation
- Sulfuric Acid Alkylation
- Hydroprocessing
- Catalytic Reforming
- Delayed Coking
- Amine Treating
- Sulfur Recovery

Domain 7- Corrosion Monitoring—3%

- Radiography
- Ultrasonic thickness measurements
- Corrosion coupons
- Electrical resistance probes
- Hydrogen flux monitoring
- Corrosion monitoring sites
- Automated on-line monitoring

Domain 8- Failure Analysis and Nondestructive Testing—3%

- Surface deposit analysis
- Field metallographic replication
- Hardness Testing
- Positive material identification
- Macroscopic examination of fracture surfaces
- Microscopic examination
- Magnetic testing
 - Wet method
 - Dry method
- Penetrant testing
- Sectioning

Types of Questions

Description of Questions

The questions on this exam are multiple-choice where there is only one correct answer. The questions are based on the knowledge and skills required in the refining industry for a Refining Corrosion Technologist. While the NACE training course is an excellent method of preparation it is not the only reference used in the development of the questions.

Sample Questions

The sample questions are included to illustrate the formats and types of questions that will be on the exam. Your performance on the sample questions should not be viewed as a predictor of your performance on the actual test.

Domain 6-Unit Specific Corrosion

1. Which one of the following materials is NOT a common material of construction for sulfur pump component?
 a. Type 316 stainless steel
 b. Alloy 400
 c. Ductile iron
 d. Carbon steel
Domain 2- Corrosion Mechanisms

2. When two different metals or alloys are electrically joined in an electrolyte, the worst corrosion occurs on the metal or alloy closer to the
 a. Cathodic (noble) end of the galvanic series
 b. Anodic (active) end of the galvanic series
 c. Both metals
 d. No corrosion takes place

Domain 8- Failure Analysis and Nondestructive Testing

3. Penetrant testing is best at finding
 a. Creep voids
 b. Porosity
 c. Sub-surface cracks
 d. Surface-breaking cracks

Domain 4- Metallurgical Failures

4. High temperature carburization occurs in which part(s) of an FCC unit?
 a. Reactor and preheater
 b. Regenerator and flue gas treater
 c. Fractionator and crack light ends unit
 d. Reactor and regenerator

Answer Key

1. b
 Reference: NACE International Corrosion Control in the Refining Industry course materials. Chapter 12

2. b

3. d

4. d
 Reference: NACE International Corrosion Control in the Refining Industry course materials. Chapter 4
Preparation

Training

NACE Course: Corrosion Control in the Refining Industry.

The course table of contents is listed below—see APPENDIX A

www.nace.org/cstm/education/Course.aspx?id=34b24d54-b111-db11-953d-001438c08dca

Reference Material

- NACE Corrosion Control In The Refining Industry course materials, included with training.
- Select NACE Standard Practices and Technical Committee Reports, included with training.
- Select API Recommended Practices—www.api.org/standards
Appendix A

CORROSION CONTROL IN THE REFINING INDUSTRY

TABLE OF CONTENTS

Chapter 1: Corrosion and Other Failures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Low-Temperature Refinery Corrosion</td>
<td>4</td>
</tr>
<tr>
<td>Low-Temperature Corrosion Principles</td>
<td>4</td>
</tr>
<tr>
<td>Corrosion Rates and Polarization</td>
<td>7</td>
</tr>
<tr>
<td>Passivity</td>
<td>8</td>
</tr>
<tr>
<td>Temperature and Concentration</td>
<td>9</td>
</tr>
<tr>
<td>Low-Temperature Conditions</td>
<td>9</td>
</tr>
<tr>
<td>High-Temperature Refinery Corrosion</td>
<td>13</td>
</tr>
<tr>
<td>High-Temperature Corrosion Principles</td>
<td>13</td>
</tr>
<tr>
<td>Linear Rate Law</td>
<td>15</td>
</tr>
<tr>
<td>Parabolic Rate Law</td>
<td>16</td>
</tr>
<tr>
<td>High-Temperature Conditions</td>
<td>17</td>
</tr>
<tr>
<td>Corrosion/Failure Mechanisms</td>
<td>19</td>
</tr>
<tr>
<td>Metal Loss—General and/or Localized Corrosion</td>
<td>19</td>
</tr>
<tr>
<td>Galvanic Corrosion</td>
<td>20</td>
</tr>
<tr>
<td>Pitting</td>
<td>24</td>
</tr>
<tr>
<td>Crevice Corrosion</td>
<td>25</td>
</tr>
<tr>
<td>Intergranular Attack</td>
<td>25</td>
</tr>
<tr>
<td>Erosion-Corrosion</td>
<td>26</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>28</td>
</tr>
<tr>
<td>Ammonium Bisulfide (NH4HS)</td>
<td>29</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>29</td>
</tr>
<tr>
<td>Process Chemicals</td>
<td>30</td>
</tr>
<tr>
<td>Organic Chlorides</td>
<td>30</td>
</tr>
<tr>
<td>Aluminum Chloride</td>
<td>31</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>31</td>
</tr>
<tr>
<td>Hydrofluoric Acid</td>
<td>33</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>33</td>
</tr>
<tr>
<td>Phenol (Carbolic Acid)</td>
<td>34</td>
</tr>
<tr>
<td>Amines</td>
<td>34</td>
</tr>
<tr>
<td>Atmospheric (External) Corrosion</td>
<td>35</td>
</tr>
<tr>
<td>Corrosion Under Insulation (CUI)</td>
<td>36</td>
</tr>
<tr>
<td>Soil Corrosion</td>
<td>36</td>
</tr>
<tr>
<td>High-Temperature Sulfide Corrosion (Without Hydrogen Present)</td>
<td>37</td>
</tr>
<tr>
<td>High-Temperature Sulfide Corrosion (With Hydrogen)</td>
<td>40</td>
</tr>
<tr>
<td>Naphthenic Acid Corrosion</td>
<td>42</td>
</tr>
<tr>
<td>High-Temperature Oxidation</td>
<td>44</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Stress Corrosion Cracking (SCC)</td>
<td>46</td>
</tr>
<tr>
<td>Chloride Stress Corrosion Cracking (CISCC)</td>
<td>49</td>
</tr>
<tr>
<td>Alkaline Stress Corrosion Cracking (ASCC)</td>
<td>50</td>
</tr>
<tr>
<td>Carbonic Acid (Wet CO2)</td>
<td>51</td>
</tr>
<tr>
<td>Polythionic Acid Stress Corrosion Cracking (PTA SCC)</td>
<td>52</td>
</tr>
<tr>
<td>Ammonia Stress Corrosion Cracking (NH3 SCC)</td>
<td>53</td>
</tr>
<tr>
<td>Wet H2S Cracking</td>
<td>53</td>
</tr>
<tr>
<td>Hydrogen Blistering</td>
<td>56</td>
</tr>
<tr>
<td>Sulfide Stress Cracking (SSC)</td>
<td>56</td>
</tr>
<tr>
<td>Hydrogen Induced Cracking (HIC)</td>
<td>57</td>
</tr>
<tr>
<td>Stress Oriented Hydrogen Induced Cracking (SOHIC)</td>
<td>57</td>
</tr>
<tr>
<td>Hydrogen Cyanide (HCN)</td>
<td>58</td>
</tr>
<tr>
<td>SCC Prevention.</td>
<td>58</td>
</tr>
<tr>
<td>Inspecting for Wet H2S Damage</td>
<td>59</td>
</tr>
<tr>
<td>High-Temperature Hydrogen Attack (HTHA)</td>
<td>62</td>
</tr>
<tr>
<td>Metallurgical Failures</td>
<td>64</td>
</tr>
<tr>
<td>Grain Growth</td>
<td>65</td>
</tr>
<tr>
<td>Graphitization</td>
<td>66</td>
</tr>
<tr>
<td>Hardening</td>
<td>66</td>
</tr>
<tr>
<td>Sensitization</td>
<td>67</td>
</tr>
<tr>
<td>Sigma Phase</td>
<td>67</td>
</tr>
<tr>
<td>885°F (475°C) Embrittlement</td>
<td>68</td>
</tr>
<tr>
<td>Temper Embrittlement</td>
<td>68</td>
</tr>
<tr>
<td>Liquid Metal Embrittlement (LME)</td>
<td>69</td>
</tr>
<tr>
<td>Carburization</td>
<td>70</td>
</tr>
<tr>
<td>Metal Dusting</td>
<td>70</td>
</tr>
<tr>
<td>Decarburization</td>
<td>71</td>
</tr>
<tr>
<td>Selective Leaching</td>
<td>71</td>
</tr>
<tr>
<td>Mechanical Failures</td>
<td>72</td>
</tr>
<tr>
<td>Incorrect or Defective Materials</td>
<td>72</td>
</tr>
<tr>
<td>Mechanical Fatigue</td>
<td>73</td>
</tr>
<tr>
<td>Corrosion Fatigue</td>
<td>74</td>
</tr>
<tr>
<td>Cavitation Damage</td>
<td>75</td>
</tr>
<tr>
<td>Mechanical Damage</td>
<td>75</td>
</tr>
<tr>
<td>Overloading</td>
<td>77</td>
</tr>
<tr>
<td>Overpressuring</td>
<td>78</td>
</tr>
<tr>
<td>Brittle Fracture</td>
<td>79</td>
</tr>
<tr>
<td>Creep</td>
<td>80</td>
</tr>
<tr>
<td>Stress Rupture</td>
<td>80</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>81</td>
</tr>
<tr>
<td>Thermal Fatigue</td>
<td>82</td>
</tr>
<tr>
<td>Other Forms of Corrosion</td>
<td>82</td>
</tr>
<tr>
<td>Boiler Feed Water Corrosion</td>
<td>82</td>
</tr>
</tbody>
</table>
Chapter 2: Crude Distillation and Desalting

Introduction ... 3
Sources of Crude Oil 4
Composition of Crude Oil 4
Remaining Constraints 5
More about Crude Oil Composition 5
Crude Oil Pretreatment 11
Desalting .. 11
Preflash .. 14
Crude Distillation Unit 14
Operation of a Crude Distillation Unit 17
Corrosion in Crude Distillation Units 19
Columns ... 20
Exchangers and Piping 21
Fired Heaters .. 21
Other Corrosion Combating Measures 22
Blending ... 22
Desalting .. 23
Caustic Addition 23
Overhead pH Control 24
Corrosion Inhibitor 25
Water Washing 26
Corrosion Monitoring in Crude Units 27
Water Analysis (Overhead Corrosion Control) 27
Hydrocarbon Analysis 28
Corrosion Rate Measurement 29
On-Stream, Non-Destructive Examination 30
Optional Team Exercise 31

Chapter 3: Fluid Catalytic Cracking Units

Introduction ... 2
Hardware ... 5
Riser/Reactor .. 5
Regenerator .. 6
Flue Gas System 7
Fractionator .. 7
Corrosion Control in FCC Units ... 10
Materials of Construction .. 10
Damage Mechanisms and Suitable Materials 12
 Reactors ... 12
 Regenerators .. 13
Catalyst Transfer Piping System ... 15
Reaction Mix Line, Main Fractionator, and Bottoms Piping 15
Flue Gas Systems ... 16
Inspection and Control Considerations 17
High-Temperature Oxidation ... 19
High-Temperature Sulfidation (H2S Attack) 25
High-Temperature Carburization ... 26
Polythionic Acid Stress Corrosion Cracking 27
Catalyst Erosion ... 28
Feed Nozzle Erosion ... 29
Refractory Damage ... 29
High-Temperature Graphitization .. 29
Sigma Phase Embrittlement ... 30
885°F (475°C) Embrittlement ... 31
Creep Embrittlement ... 31
High-Temperature Creep .. 32
Thermal Fatigue .. 32
Optional Team Exercise .. 33

Chapter 4: Cracked Light Ends Recovery Units
CLER Process Description ... 1
Materials of Construction .. 2
 Columns ... 3
 Exchangers .. 3
Corrosion Problems .. 4
 Corrosion .. 4
 Hydrogen Induced Damage .. 5
 Inspection Techniques for Hydrogen-Induced Damage 7
 Prevention and Repair Techniques 7
 Ammonia Stress Corrosion Cracking 8
 Carbonate Stress Corrosion Cracking 8
 Fouling/Corrosion of Reboiler Circuits 8
Corrosion Control Measures .. 8
 Water Washing ... 9
 Polysulfide Injection .. 11
 Corrosion Inhibitors .. 12
 Corrosion Monitoring .. 12
Chapter 5: Hydrofluoric Acid Alkylation Units

Introduction ... 1
HF Alky Process Description 2
Materials of Construction 4
 Columns ... 5
 Exchangers 5
 Piping ... 6
 Bolting .. 6
Corrosion Problems 6
 Corrosion .. 6
 Hydrogen Induced Damage 10
Inspection and Mitigation 12
Corrosion Control Measures 13
 Corrosion Monitoring 13
 Corrosion Probes 14

Chapter 6: Sulfuric Acid Alkylation Units

Introduction ... 1
Process Description 2
 Reaction Section 4
 Treating Section 4
 Fractionation Section 5
 Refrigeration Section 6
Materials of Construction 7
Materials and Corrosion Problems 8
 Sulfuric Acid Corrosion 9
 Acid Concentration 9
 Acid Temperature and Velocity 9
 Acid Dilution 10
 Hydrogen Grooving 10
 Feed Contaminants 11
 Acid and Neutral Esters 11
 Acid Esters 12
 Neutral Esters 12
 Acid Carryover 13
 Corrosion Under Insulation 13
Fouling Problems .. 14
Corrosion Control Measures 14
Reactor Section Corrosion 14
Tower Overhead Corrosion 15
Reboiler Corrosion and Fouling Control 16
Acid Tanks .. 16
Corrosion Control During Unit Shutdowns 17
Corrosion Under Insulation (CUI) 18
Corrosion Monitoring .. 18
Inspection .. 20
Reaction Section .. 20
Treating Section ... 21
Fractionation Section ... 21
Refrigeration Equipment .. 22
Acid Tank .. 22

Chapter 7: Hydroprocessing Units

Introduction .. 1
Hydroprocessing .. 2
Hydrotreating ... 3
Hydrocracking .. 4
Variations on Hydroprocessing 5
Types of Corrosion Common in Hydroprocessing Units 6
High-Temperature Hydrogen Attack 6
High-Temperature H2S Corrosion – With Hydrogen Present . 7
High-Temperature H2S Corrosion – With Little or No Hydrogen Present 9
Naphthenic Acid Corrosion 10
Ammonium Bisulfide Corrosion 10
Chloride Stress Corrosion Cracking (SCC) 12
Failures Often Happen After Startup 13
Additional Considerations with Stainless Steel 13
Polythionic Acid (PTA) Stress Corrosion Cracking 14
Stainless Steels Used to Prevent PTA 14
Other Methods to Prevent PTA SCC 15
Wet H2S Cracking ... 15
Sulfide Stress Cracking (SSC) 16
Hydrogen Induced Cracking (HIC) and Stress-Oriented Hydrogen Induced Cracking (SOHIC) 17
Material Property Degradation Mechanisms 18
Temper Embrittlement .. 18
Hydrogen Embrittlement 19
Selection of Materials .. 20
Chapter 8: Catalytic Reforming Units

Introduction ... 2
Octane Number (RON). .. 3
Catalyst ... 4
Catalytic Reforming Processes ... 5
Catalytic Reformer, Semi-Regenerative 6
Reactor Design .. 8
Corrosion Phenomena in Catalytic Reformers 9
High Temperature Hydrogen Attack (HTHA) 9
Stress Corrosion Cracking .. 10
Materials of Construction ... 11
Reactors .. 11
Exchangers and Piping .. 11
Fired Heaters and Other Equipment 12
Corrosion Control ... 13
Corrosion Monitoring .. 14
Inspection in Catalytic Reformers 15

Chapter 9: Delayed Coking Units

Introduction ... 1
Equipment and Operation of the Delayed Coking Unit. 2
Corrosion and Other Problems in Delayed Coking Units 4
High-Temperature Sulfur Corrosion 5
Naphthenic Acid Corrosion ... 6
High-Temperature Oxidation/Carburization/Sulfidation 6
Decoking Heater Tubes ... 7
Erosion-Corrosion ... 8
Chapter 10: Amine Treating Units

- Introduction ... 1
- Types of Amines Used 2
- Refinery Amine Process Description 4
 - Tail Gas Units ... 7
- Corrosion Phenomena 9
- Corrosive Species 10
- Amine Degradation 15
- Cracking Phenomena 16
- Corrosion Inhibitors 17
- Materials of Construction 18
- Corrosion Monitoring 19
- Corrosion Control Measures 20

Chapter 11: Sulfur Recovery Units

- Introduction ... 2
- Sulfur Recovery Units 2
 - Sulfur Chemical Reactions 3
 - Sulfur Recovery Process 4
 - Tail Gas Treating Unit 5
 - Incinerator ... 6
 - Cold Bed Adsorption (CBA) Unit 7
- Corrosion Mechanisms 7
 - Sulfdation of Carbon Steels 8
 - Sour Environment Corrosion 8
 - Weak Acid Corrosion 9
- Corrosion of Claus Units by System 10
 - Feed Gas System 10
 - Corrosion Concerns 10
 - Mitigation of Corrosion 11
 - Reaction Furnace and Waste Heat Exchanger Systems 12
 - Corrosion Concerns 12
 - Mitigation of Corrosion 12
Chapter 12: Refinery Injection Systems

Introduction ... 1
Definitions ... 2
Injection Point ... 2
Injection System ... 2
Injection System Design 2
Injection System Design Parameters 3
Engineeering Practices 3
Process Design ... 4
Materials Selection Considerations 5
Inspection of Injection Point Locations 6
Location of Injection Point 6
Co-Injectants .. 7
Injection System Hardware 7
Chemical Storage Tanks 9
Chemical Injection Pumps 10
Additive Control Systems 11
Piping Systems 11
Injector .. 11
Chapter 13: Process Additives and Corrosion Control

Introduction ... 1
Factors Affecting Corrosion .. 5
 Acids .. 5
 Temperature ... 5
 Pressure .. 6
 Flow ... 6
 Turbulence ... 7
 Material Selection ... 7
Methods to Mitigate Corrosion .. 8
 Desalting and Caustic Injection 8
 Water Washing .. 8
 Acid Neutralization ... 9
 Barrier between Metal and Environment 9
Chemicals Used to Combat Corrosion 10
 Filming Amines .. 10
 Filmer Formulation .. 13
 Filmer Application .. 13
Treat Rates .. 14
Monitoring Filmer Performance 14
Neutralizing Amines ... 15
Polysulfides .. 20
Naphthenic Acid Corrosion Inhibitors 22
Application of Corrosion Inhibitors 23

Chapter 14: Corrosion Monitoring in Refineries

Introduction ... 2
Uses of Corrosion Monitoring .. 3
Corrosion Monitoring Techniques 3
 Corrosion Coupons .. 4
 Electrical Resistance Monitoring 7
 Electrochemical Corrosion Monitoring 10
 Linear Polarization Resistance 12
Potential Monitoring .. 13
Zero Resistance Ammetry (ZRA) 14
Electrochemical Impedance Spectroscopy (EIS) 14
Electrochemical Noise (EN) .. 15
Hydrogen Flux Monitoring ... 16
A Comprehensive Corrosion Monitoring Program 19
Corrosion Monitoring Sites ... 19
Corrosion Monitoring in Specific Process Units 23
 Atmospheric Distillation Unit (ADU) 23
Chapter 15: Materials of Construction for Refinery Applications

The Role of the Corrosion Engineer .. 2
Problem Definition ... 3
Corrosion Failures ... 6
Corrosion Testing Methods ... 7
Materials Selection Approach ... 8
Using Professional Consultants ... 9
Specifying Materials .. 10
National Standards ... 12
Company Standards ... 13
What the Designer Should Remember When Writing Specifications 14
Questions the Designer Should Ask to Control Quality 16
Fitness for Service ... 17

Refinery Materials of Construction .. 17
Introduction. ... 17

Killed Steel .. 21
Steels ... 21
Carbon Steel .. 25
C-Mo Steels ... 26
Low-Alloy Steels ... 26
Cr-Mo Steels .. 26
Nickel Steels .. 27
Stainless Steels ... 28
Martensitic Stainless Steels .. 30
Ferritic Stainless Steels .. 31
Austenitic Stainless Steels ... 31
Precipitation Hardening Stainless Steels 33
Duplex Stainless Steels .. 33
Specialty Stainless Steels ... 34
Cast Irons ... 34
Gray Cast Irons .. 34
Ductile Irons ... 35
High-Silicon Cast Irons .. 35
Nickel Cast Irons ... 35
Other Metals and Alloys ... 35
Copper and Its Alloys .. 35
Nickel Alloys .. 36
Aluminum .. 37
Titanium and Its Alloys 38
Non-Metallic Materials 38
Refractories .. 38
Plastics .. 39
Thermosetting Resins 41
Heat Treatment .. 41
Normalization .. 41
Annealing .. 42
Quenching .. 42
Stress Relieving 43
 Solution Heat Treatment 43
Specialized Heat Treatments 44
What the Designer Should Know About Heat Treatments 45
Heat Treatment Verification 47
Heat Treatment for Welds 47
 Preheat .. 47
 Postweld Heat Treatment 48
Normalizing .. 50
Welding .. 50
 The Nature of Welding 50
Welding Decisions 52
Welding Processes 52
 Shielded Metal Arc Welding (SMAW) 53
 Gas Metal Arc Welding (GMAW) 54
 Gas Tungsten Arc Welding (GTAW) 55
 Submerged Arc Welding (SAW) 55
 Welding Procedures and Welder Qualification 55
 Inspection of Welding Electrodes and Filler Metal 56

Chapter 16: Refinery Operations and Overview

 Introduction 2
 Refinery Operating Objectives 2
 Refining Process Overview 4
 Process Interactions with Corrosion 12
Chapter 17: Failure Analysis in Refineries

Introduction ... 2
Procedural Approach and Test Methods 3
 Background Information ... 4
 Initial Examination .. 5
 Nondestructive Testing .. 6
 Surface Deposit Analysis ... 6
 Field Metallographic Replication (FMR) 7
 Hardness Testing ... 7
 Chemical Analysis ... 8
 Magnetic Particle Inspection (MPI) 8
 Wet Method .. 9
 Dry Method ... 9
 Dye Penetrant Testing (PT) .. 10
 Sectioning ... 10

Macroscopic Examination of Fracture Surfaces 11
Microscopic Examination .. 11
Fracture Appearance ... 12
 Ductile Fracture ... 12
 Brittle Fracture .. 12
 Fatigue Fractures ... 13
 Stress Corrosion Cracking ... 13
 Creep Rupture Failures .. 14
Additional Testing and Analysis .. 14
 Mechanical Testing ... 14
 Application of Fracture Mechanics 14
Root Cause Analysis .. 15
Recommendations ... 16
Appendices

A NACE Standard MR0103, “Materials Resistant to Sulfide Stress Cracking in Corrosive Petroleum Environments”

B NACE Standard TM0284, “Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking”

C NACE Standard TM0177, “Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H₂S Environments”

E NACE SP0403, “Avoiding Caustic Stress Corrosion Cracking of Carbon Steel Refinery Equipment and Piping”

F NACE Publication 34105, “Effect of Nonextractable Chlorides on Refining Corrosion and Fouling”

G NACE SP0472, “Methods and Controls to Prevent In-Service Environmental Cracking of Carbon Steel Weldments in Corrosive Petroleum Refining Environments”

H NACE SP0296, “Guidelines for Detection, Repair, and Mitigation of Cracking of Existing Petroleum Refinery Pressure Vessels in Wet H₂S Environments”

I NACE Publication 8X194, “Materials and Fabrication Practices for New Pressure Vessels to be Used in Wet H₂S Refinery Environments”

J NACE Publication 8X294, “Review of Published Literature on Wet H₂S Cracking of Steels Through 1989”
K NACE Publication 5A171, “Materials for Receiving, Handling, and Storing Hydrofluoric Acid”

L NACE Standard RP0391, Materials for Handling and Storage of Commercial (90 to 100%) Sulfuric Acid at Ambient Temperatures”

M NACE SP0294, “Design, Fabrication, and Inspection of Tanks for the Storage of Concentrated Sulfuric Acid and Oleum at Ambient Temperatures”

N NACE SP0205, ”Recommended Practice for the Design, Fabrication and Inspection of Tanks for the Storage of Petroleum Refining Alkylation Unit Spent Sulfuric Acid at Ambient Temperatures”

O API Publication 941, “Steels for Hydrogen Service at Elevated Temperature and Pressure”

P NACE Standard SP0170, “Protection of Austenitic Stainless Steels and Other Austenitic Alloys from Polythionic Acid Stress Corrosion Cracking During Shutdown of Refinery Equipment”

Q NACE Publication 34103, “Overview of Sulfidic Corrosion in Petroleum Refining”

U NACE Standard TM0169, “Laboratory Corrosion Testing of Metals”

V NACE SP0590, “Recommended Practice for Prevention, Detection and Correction of Deaerator Cracking”

W

X NACE International Publication 34109 Crude Distillation Unit—Distillation Tower Overhead System Corrosion

Y UNS Numbers/Composition of Alloys

Z Glossary of Refinery Corrosion Related Terms